Hölder Equicontinuity of the Integrated Density of States at Weak Disorder

نویسنده

  • JEFFREY H SCHENKER
چکیده

Hölder continuity, |Nλ(E) − Nλ(E )| ≤ C|E − E|, with a constant C independent of the disorder strength λ is proved for the integrated density of states Nλ(E) associated to a discrete random operator H = Ho + λV consisting of a translation invariant hopping matrix Ho and i.i.d. single site potentials V with an absolutely continuous distribution, under a regularity assumption for the hopping term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality of Log Hölder Continuity of the Integrated Density of States

We construct examples, that log Hölder continuity of the integrated density of states cannot be improved. Our examples are limit-periodic.

متن کامل

Spectral Analysis of Percolation Hamiltonians

We study the family of Hamiltonians which corresponds to the adjacency operators on a percolation graph. We characterise the set of energies which are almost surely eigenvalues with finitely supported eigenfunctions. This set of energies is a dense subset of the algebraic integers. The integrated density of states has discontinuities precisely at this set of energies. We show that the convergen...

متن کامل

Hölder Continuity of the Integrated Density of States for Quasiperiodic Schrödinger Equations and Averages of Shifts of Subharmonic Functions

In this paper we consider various regularity results for discrete quasiperiodic Schrödinger equations −ψn+1 − ψn−1 + V (θ + nω)ψn = Eψn with analytic potential V . We prove that on intervals of positivity for the Lyapunov exponent the integrated density of states is Hölder continuous in the energy provided ω has a typical continued fraction expansion. The proof is based on certain sharp large d...

متن کامل

Hölder Index for Density States of (α, 1, Β)-superprocesses at a given Point

A Hölder regularity index at given points for density states of (α, 1, β)-superprocesses with α > 1 + β is determined. It is shown that this index is strictly greater than the optimal index of local Hölder continuity for those density states.

متن کامل

Hölder Continuity of the Ids for Matrix-valued Anderson Models

We study a class of continuous matrix-valued Anderson models acting on L2(Rd) ⊗ C . We prove the existence of their Integrated Density of States for any d ≥ 1 and N ≥ 1. Then for d = 1 and for arbitrary N , we prove the Hölder continuity of the Integrated Density of States under some assumption on the group GμE generated by the transfer matrices associated to our models. This regularity result ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004